PCR Amplification and Transcription for Site-Specific Labeling of Large RNA Molecules by a Two-Unnatural-Base-Pair System
نویسندگان
چکیده
For the site-specific labeling and modification of RNA by genetic alphabet expansion, we developed a PCR and transcription system using two hydrophobic unnatural base pairs: 7-(2-thienyl)-imidazo[4,5-b]pyridine (Ds) and 2-nitro-4-propynylpyrrole (Px) as a third pair for PCR amplification and Ds and pyrrole-2-carbaldehyde (Pa) for the incorporation of functional components as modified Pa bases into RNA by T7 transcription. To prepare Ds-containing DNA templates with long chains, the Ds-Px pair was utilized in a fusion PCR method, by which we demonstrated the synthesis of 282-bp DNA templates containing Ds at specific positions. Using these Ds-containing DNA templates and a biotin-linked Pa substrate (Biotin-PaTP) as a modified Pa base, 260-mer RNA transcripts containing Biotin-Pa at a specific position were generated by T7 RNA polymerase. This two-unnatural-base-pair system, combining the Ds-Px and Ds-Pa pairs with modified Pa substrates, provides a powerful tool for the site-specific labeling and modification of desired positions in large RNA molecules.
منابع مشابه
Fluorescent probing for RNA molecules by an unnatural base-pair system
Fluorescent labeling of nucleic acids is widely used in basic research and medical applications. We describe the efficient site-specific incorporation of a fluorescent base analog, 2-amino-6-(2-thienyl)purine (s), into RNA by transcription mediated by an unnatural base pair between s and pyrrole-2-carbaldehyde (Pa). The ribonucleoside 5'-triphosphate of s was site-specifically incorporated into...
متن کاملAn unnatural base pair system for efficient PCR amplification and functionalization of DNA molecules
Toward the expansion of the genetic alphabet, we present an unnatural base pair system for efficient PCR amplification, enabling the site-specific incorporation of extra functional components into DNA. This system can be applied to conventional PCR protocols employing DNA templates containing unnatural bases, natural and unnatural base triphosphates, and a 3'-->5' exonuclease-proficient DNA pol...
متن کاملSite-specific labeling of RNA by combining genetic alphabet expansion transcription and copper-free click chemistry
Site-specific labeling of long-chain RNAs with desired molecular probes is an imperative technique to facilitate studies of functional RNA molecules. By genetic alphabet expansion using an artificial third base pair, called an unnatural base pair, we present a post-transcriptional modification method for RNA transcripts containing an incorporated azide-linked unnatural base at specific position...
متن کاملSite-specific incorporation of functional components into RNA by an unnatural base pair transcription system.
Toward the expansion of the genetic alphabet, an unnatural base pair between 7-(2-thienyl)imidazo[4,5-b]pyridine (Ds) and pyrrole-2-carbaldehyde (Pa) functions as a third base pair in replication and transcription, and provides a useful tool for the site-specific, enzymatic incorporation of functional components into nucleic acids. We have synthesized several modified-Pa substrates, such as alk...
متن کاملSite-specific biotinylation of RNA molecules by transcription using unnatural base pairs
Direct site-specific biotinylation of RNA molecules was achieved by specific transcription mediated by unnatural base pairs. Unnatural base pairs between 2-amino-6-(2-thienyl)purine (denoted by s) and 2-oxo(1H)pyridine (denoted by y), or 2-amino-6-(2-thiazolyl)purine (denoted as v) and y specifically function in T7 transcription. Using these unnatural base pairs, the substrate of biotinylated-y...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2012 شماره
صفحات -
تاریخ انتشار 2012